Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Biomedically relevant circuit-design strategies in mammalian synthetic biology.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Mol Syst Biol, 30 Apr 2013 DOI: 10.1038/msb.2013.48 Link to full text
Abstract: The development and progress in synthetic biology has been remarkable. Although still in its infancy, synthetic biology has achieved much during the past decade. Improvements in genetic circuit design have increased the potential for clinical applicability of synthetic biology research. What began as simple transcriptional gene switches has rapidly developed into a variety of complex regulatory circuits based on the transcriptional, translational and post-translational regulation. Instead of compounds with potential pharmacologic side effects, the inducer molecules now used are metabolites of the human body and even members of native cell signaling pathways. In this review, we address recent progress in mammalian synthetic biology circuit design and focus on how novel designs push synthetic biology toward clinical implementation. Groundbreaking research on the implementation of optogenetics and intercellular communications is addressed, as particularly optogenetics provides unprecedented opportunities for clinical application. Along with an increase in synthetic network complexity, multicellular systems are now being used to provide a platform for next-generation circuit design.
2.

The use of light for engineered control and reprogramming of cellular functions.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 26 Dec 2011 DOI: 10.1016/j.copbio.2011.12.004 Link to full text
Abstract: Could combating incurable diseases lie in something as simple as light? This scenario might not be too farfetched due to groundbreaking research in optogenetics. This novel scientific area, where genetically encoded photosensors transform light energy into specifically engineered biological processes, has shown enormous potential. Cell morphology can be changed, signaling pathways can be reprogrammed, and gene expression can be regulated all by the control of light. In biomedical applications where precise cell targeting is essential, non-invasive light has shown great promise. This article provides a summary of the recent advances that utilize light in genetic programming and precise control of engineered biological functions.
Submit a new publication to our database